学习程序员必知必会的基础算法(收藏)

近年来学习python的程序员愈来愈多,有的同学选择了python培训机构,也有的人觉得自己天赋好选择了自学不管大家怎么去学习,在学习python基础的过程中,肯定离不开的就是基础算法,今天就为大家介绍几大学习中的基础算法。

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上,快速排序通常明显比其他Ο(nlogn)算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1.从数列中挑出一个元素,称为“基准”(pivot),

2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。

在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

1.创建一个堆H[0..n-1]

2.把堆首(最大值)和堆尾互换

3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4.重复步骤2,直到堆的尺寸为1

算法三:归并排序

归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。

算法步骤:

1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2.设定两个指针,最初位置分别为两个已经排序序列的起始位置

3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4.重复步骤3直到某一指针达到序列尾

5.将另一序列剩下的所有元素直接复制到合并序列尾

算法四:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。

搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。

该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。

算法步骤:

1.将n个元素每5个一组,分成n/5(上界)组。

2.取出每一组的中位数,任意排序方法,比如插入排序。

3.递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。

4.用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。

5.若i==k,返回x;若i<k,在小于x的元素中递归查找第i小的元素;若i>k,在大于x的元素中递归查找第i-k小的元素。

终止条件:n=1时,返回的即是i小元素。

好啦!今天的分享到这里就结束了,希望大家持续关注马哥教育官网,每天都会有大量优质内容与大家分享!

版权声明:转载文章来自公开网络,版权归作者本人所有,推送文章除非无法确认,我们都会注明作者和来源。如果出处有误或侵犯到原作者权益,请与我们联系删除或授权事宜。

相关新闻